Article | . Vol. 19, Issue. 4
Mechanical properties and antibacterial effects on Streptococcus mutans of composite resins containing phytoncide



Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry1
Department of Dental Hygiene, Medical Science College, Konyang University2




.. 467:477


PDF XML




Objectives: The aim of this study is to investigate the mechanical properties and antibacterial effects on Streptococcus mutans of composite resins containing phytoncide. Methods: Phytoncide was mixed with commercial composite resins at 0 (control), 1.25, 2.5, 3.75, and 5.0 weight percentage (wt%). Mechanical properties related to composite resins such as surface hardness, depth of cure, and flexural strength were measured. Antibacterial effects of composite resins were analyzed by using Streptococcus mutans (ATCC 25175). The results were analyzed by one-way analysis of variance followed by Tukey’s test (p<0.05). Results: Composite resins that contain low wt% of phytoncide demonstrated no significant difference in surface hardness, depth of cure, and flexural strength (p>0.05). However, composite resins that contain high wt% of phytoncide had significantly decreased mechanical properties (p<0.05). In terms of antibacterial effects, composite resins containing phytoncide inhibited the growth of S. mutans. Conclusions: Our findings suggest that novel composite resins containing phytoncide have effective antibacterial properties while maintaining the originally important mechanical features of composite resins.



1. Wang Y, Hua H, Li W, Wang R, Jiang X, Zhu M. Strong antibacterial dental resin composites containing cellulose nanocrystal/zinc oxide nanohybrids. J Dent 2019;80:23-9.   

2. Lee MJ, Kim KM. A study on the fluoride release, microhardness and cytotoxicity of fluoride releasing restorative materials. Korean J Dent Mater 2016;43(4):299-306.   

3. Boaro LCC, Campos LM, Varca GHC, Dos Santos TMR, Marques PA, Sugii MM, et al. Antibacterial resin-based composite containing chlorhexidine for dental applications. Dent Mater 2019;35(6):909-18.   

4. Lee MJ, Choi YR, Kang MK. Comparison of surface characterization according to surface treatment of composite resin inlay. J Korean Soc Dent Hyg 2019;19(2):307-15.   

5.  [5] Astvaldsdottir A, Dagerhamn J, van Dijken JW, Naimi-Akbar A, Sandborgh-Englund G, Tranaeus S, et al. Longevity of posterior resin composite restorations in adults - A systematic review. J Dent 2015;43(8):934-54.   

6. Xu X, Wang Y, Liao S, Wen ZT, Fan Y. Synthesis and characterization of antibacterial dental monomers and composites. J Biomed Mater Res B Appl Biomater 2012;100(4):1151-62. https://doi.org/10.1002/jbm.b.32683|  

7. Moon HJ, El-Fiqi A, R CJ, Lee SH, Gong MS, Kim HW, et al. Evaluation of dental composite dispersed with silver-doped phosphate antibacterial glasses. Korean J Dent Mater 2012;39(4):311-8.   

8. Lee HO, Park JY. Antibacterial effect and cytotoxicity of desensitizer containing antimicrobial. J Dent Hyg Sci 2015;15(2):238-45. [9] Kang HY. Antibacterial effect of phytoncide. In: Secret of phytoncide. Edited by Kang HY. Seoul: Yeogsanet; 2003: 52-5.   

9. Kang HY. Antibacterial effect of phytoncide. In: Secret of phytoncide. Edited by Kang HY. Seoul: Yeogsanet; 2003: 52-5.   

10. Hwang HJ, Yu JS, Lee HY, Kwon DJ, Han W, Heo SI, et al. Evaluations on deodorization effect and anti-oral microbial activity of essectial oil from pinus koraiensis. Korean J Plant Resour 2014;27(1):1-10. https://doi.org/10.7732/kjpr.2014.27.1.001  

11. Roh JY, Kim KR. Antimicrobial activity of Korean propolis extracts on oral pathogenic microorganisms. J Dent Hyg Sci 2018;18(1):18-23.  

12. Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 2002;46(6):1914-20. https://doi.org/10.1128/AAC.46.6.1914-1920.2002  

13. Lee HO, Baek SH, Han DM. Antimicrobial effects of chamaecyparis obtusa essential oil. Microbiol Biotechnol Lett 2001;29(4):253-7.   

14. Kang SK, Shin MK, Auh QS, Chun YH, Hong JP. Antibacterial effect on oral phtogenic bacteria of phytoncide from chamaecyparis obtusa. J Oral Med Pain 2007;32(1):45-55.   

15. Kim SQ, Shin MK, AuH QS, Lee JY, Hong JP, Chun YH. Effect of phytoncide on pophyromonas gingivalis. J Oral Med Pain 2007; 32(2): 137-50.   

16. ISO. Dentistry-polymer-based restorative materials. ISO 4049 2019.   

17. Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent 2013;38(6):618-25. [18] El-Damanhoury H, Platt J. Polymerization shrinkage stress kinetics and related properties of bulk-fill resin composites. Oper Dent 2014;39(4):374-82. https://doi.org/10.2341/13-017-L   

18. [18] El-Damanhoury H, Platt J. Polymerization shrinkage stress kinetics and related properties of bulk-fill resin composites. Oper Dent 2014;39(4):374-82. https://doi.org/10.2341/13-017-L  

19. Hahnel S, Wastl DS, Schneider-Feyrer S, Giessibl FJ, Brambilla E, Cazzaniga G, et al. Streptococcus mutans biofilm formation and release of fluoride from experimental resin-based composites depending on surface treatment and S-PRG filler particle fraction. J Adhes Dent 2014;16(4):313-21. https://doi.org/10.3290/j.jad.a31800   

20. Zhang N, Chen C, Melo MA, Bai YX, Cheng L, Xu HH. A novel protein-repellent dental composite containing 2-methacryloyloxyethyl phosphorylcholine. Int J Oral Sci 2015;7(2):103-9. https://doi.org/10.1038/ijos.2014.77  

21. Kim OY. Optimization of dental properties of polymeric dental restorative composites combined with inorganic antibacterial agent. Appl Chem Eng 2000;11(6):651-6.   

22. Weng Y, Howard L, Guo X, Chong VJ, Gregory RL, Xie D. A novel antibacterial resin composite for improved dental restoratives. J Mater Sci Mater Med 2012;23(6):1553-61. 10.1007/s10856-012-4629-z  

23. Kim JW, Choi SS. A study on the antibiosis and physical and mechanical characteristics of dental resin. J Korean Soc Dent Hyg 2004;4(2):179-91.   

24.  [24] Kang SN, Kim SE, Choi J, Park K, Goo JH, Sim DS, et al. Comparison of phytoncide with sirolimus as a novel drug candidate for drug-eluting stent. Biomaterials 2015;44:1-10. https://doi.org/10.1016/j.biomaterials.2014.12.015   

25. Abe T, Hisama M, Tanimoto S, Shibayama H, Mihara Y, Nomura M. Antioxidant effects and antimicrobial activities of phytoncide. Biocontrol Sci 2008;13(1):23-8. https://doi.org/10.4265/bio.13.23  

26. Kwon JS, Lee MJ, Kim JY, Kim D, Ryu JH, Jang S, et al. Novel anti-biofouling light-curable fluoride varnish containing 2-methacryloyloxyethyl phosphorylcholine to prevent enamel demineralization. Sci Rep 2019;9(1):1432. https://doi.org/10.1038/s41598-018-38255-2  

27. Kwon JS, Lee MJ, Kim JY, Kim D, Ryu JH, Jang S, et al. Novel anti-biofouling bioactive calcium silicate-based cement containing 2-methacryloyloxyethyl phosphorylcholine. PLoS One 2019;14(1):e0211007. https//doi.org/10.1371/journal.pone.0211007   

28. Kitagawa H, Miki-Oka S, Mayanagi G, Abiko Y, Takahashi N, Imazato S. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism. J Dent 2018;70:92-6. https://doi.org/10.1016/j.jdent.2017.12.017   

29. Jung SH, Jung HY. Correlation between the amount and activities of oral microorganisms by shapes and oral malodor components. J Korean Acad Dent Hyg 2008;10(1):59-72.   



online submission
online submission
online submission
online submission
online submission
Sub Menu
Sub Banner
Sub Menu
Sub Banner
Sub Banner
Sub Banner
Sub Banner
Sub Menu
Sub Menu